Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509178

ABSTRACT

Phosphodiesterase 12 (PDE12) is a negative regulator of the type 1 interferon (IFN) response and here we show that PDE12 inhibitors (lead compounds 63 and 17) are associated with increased RNAseL activity, are well tolerated at the therapeutic range and inhibit, both in vitro and in vivo, the replication of several RNA viruses including hepatitis C virus (HCV), dengue virus (DENV), West Nile Virus (WNV) and SARS-CoV-2.


Subject(s)
Hepatitis C
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.474030

ABSTRACT

The mutational landscape of SARS-CoV-2 varies at both the dominant viral genome sequence and minor genomic variant population. An early change associated with transmissibility was the D614G substitution in the spike protein. This appeared to be accompanied by a P323L substitution in the viral polymerase (NSP12), but this latter change was not under strong selective pressure. Investigation of P323L/D614G changes in the human population showed rapid emergence during the containment phase and early surge phase of wave 1 in the UK. This rapid substitution was from minor genomic variants to become part of the dominant viral genome sequence. A rapid emergence of 323L but not 614G was observed in a non-human primate model of COVID-19 using a starting virus with P323 and D614 in the dominant genome sequence and 323L and 614G in the minor variant population. In cell culture, a recombinant virus with 323L in NSP12 had a larger plaque size than the same recombinant virus with P323. These data suggest that it may be possible to predict the emergence of a new variant based on tracking the distribution and frequency of minor variant genomes at a population level, rather than just focusing on providing information on the dominant viral genome sequence e.g., consensus level reporting. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-548968.v1

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433753

ABSTRACT

Introduction: SARS-CoV-2 has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgRNAs has a unique 5 sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS-junction), that can be identified using sequencing. Results: High resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS-junctions and be used as a proxy to quantify sgmRNAs for understanding virus biology. This was tested on published datasets and clinical samples from patients and longitudinal samples from animal models with COVID-19. Discussion: LeTRS identified known leader-TRS-junctions and identified novel species that were common across different species. The data indicated multi-phasic abundance of sgmRNAs in two different animal models, with spikes in sgmRNA abundance reflected in human samples, and therefore has implications for transmission models and nucleic acid-based diagnostics.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.31.275701

ABSTRACT

There is dire need for an effective and affordable vaccine against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a modular virus-like particle vaccine candidate displaying the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) using SpyTag/SpyCatcher technology (RBD-SpyVLP). Low doses of RBD-SpyVLP in a prime-boost regimen induced a strong neutralising antibody response in mice and pigs that was superior to convalescent human sera. We evaluated antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we showed that RBD-SpyVLP induced a polyclonal antibody response that recognised all key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. The induction of potent and polyclonal antibody responses by RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic. Moreover, RBD-SpyVLP is highly resilient, thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271965

ABSTRACT

With the rapid rate of Covid-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks, isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral apparatus. While proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required for translation of overlapping open reading frames. The frameshifting element (FSE), one of three highly conserved regions of coronaviruses, includes an RNA pseudoknot considered essential for this ribosomal switching. In this work, we apply our graph-theory-based framework for representing RNA secondary structures, "RAG" (RNA-As Graphs), to alter key structural features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally-important stem and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Additionally, our microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings not only advance our computational design of RNAs containing pseudoknots; they pinpoint to key residues of the SARS-CoV-2 virus as targets for anti-viral drugs and gene editing approaches. SIGNIFICANCESince the outbreak of Covid-19, numerous projects were launched to discover drugs and vaccines. Compared to protein-focused approaches, targeting the RNA genome, especially highly conserved crucial regions, can destruct the virus life cycle more fundamentally and avoid problems of viral mutations. We choose to target the small frame-shifting element (FSE) embedded in the Open Reading Frame 1a,b of SARS-CoV-2. This FSE is essential for translating overlapping reading frames and thus controlling the viral protein synthesis pathway. By applying graph-theory-based computational algorithms, we identify structurally crucial residues in the FSE as potential targets for anti-viral drugs and gene editing.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.30.273920

ABSTRACT

The COVID-19 pandemic presents an urgent health crisis. Human neutralizing antibodies (hNAbs) that target the host ACE2 receptor-binding domain (RBD) of the SARS-CoV-2 spike1-5 show therapeutic promise and are being evaluated clincally6-8. To determine structural correlates of SARS-CoV-2 neutralization, we solved 8 new structures of distinct COVID-19 hNAbs5 in complex with SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed classification into categories: (1) VH3-53 hNAbs with short CDRH3s that block ACE2 and bind only to "up" RBDs, (2) ACE2-blocking hNAbs that bind both "up" and "down" RBDs and can contact adjacent RBDs, (3) hNAbs that bind outside the ACE2 site and recognize "up" and "down" RBDs, and (4) Previously-described antibodies that do not block ACE2 and bind only "up" RBDs9. Class 2 comprised four hNAbs whose epitopes bridged RBDs, including a VH3-53 hNAb that used a long CDRH3 with a hydrophobic tip to bridge between adjacent "down" RBDs, thereby locking spike into a closed conformation. Epitope/paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally-occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects, suggesting combinations for clinical use, and providing insight into immune responses against SARS-CoV-2.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.30.274464

ABSTRACT

Global health has been threatened by the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2)1. Although considered primarily a respiratory infection, many COVID-19 patients also suffer severe cardiovascular disease2-4. Improving patient care critically relies on understanding if cardiovascular pathology is caused directly by viral infection of cardiac cells or indirectly via systemic inflammation and/or coagulation abnormalities3,5-9. Here we examine the cardiac tropism of SARS-CoV-2 using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and three-dimensional engineered heart tissues (3D-EHTs). We observe that hPSC-CMs express the viral receptor ACE2 and other viral processing factors, and that SARS-CoV-2 readily infects and replicates within hPSC-CMs, resulting in rapid cell death. Moreover, infected hPSC-CMs show a progressive impairment in both electrophysiological and contractile properties. Thus, COVID-19-related cardiac symptoms likely result from a direct cardiotoxic effect of SARS-CoV-2. Long-term cardiac complications might be possible sequelae in patients who recover from this illness.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.29.272864

ABSTRACT

We describe a mammalian cell-based assay capable of identifying coronavirus 3CL protease (3CLpro) inhibitors without requiring the use of live virus. By enabling the facile testing of compounds across a range of coronavirus 3CLpro enzymes, including the one from SARS-CoV-2, we are able to quickly identify compounds with broad or narrow spectra of activity. We further demonstrate the utility of our approach by performing a curated compound screen along with structure-activity profiling of a series of small molecules to identify compounds with antiviral activity. Throughout these studies, we observed concordance between data emerging from this assay and from live virus assays. By democratizing the testing of 3CL inhibitors to enable screening in the majority of laboratories rather than the few with extensive biosafety infrastructure, we hope to expedite the search for coronavirus 3CL protease inhibitors, to address the current epidemic and future ones that will inevitably arise.

10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.29.273425

ABSTRACT

The human placenta is increasingly a focus of research related to early child development and the impact of maternal hyperimmune states. The ability to model human trophectoderm disease states from human pluripotent stem cells, the nature of human pluripotent stem cell potency and the mechanisms regulating human trophectoderm specification remains poorly understood. Recent work suggests that only the naive state can give rise to trophectoderm and that primed iPSC generate mixed amnionic and mesoderm lineages. Here we identify conditions that efficiently drive the specification of primed iPSC to trophectoderm, named Trophoblast Stem Cell (TSC). iPS-derived-TSC share transcriptional, morphological and functional characteristics with human in vivo cytotrophoblasts including activation of human endogenous retroviruses, expression of COVID-19 associated host factors and generation of multinucleated syncytiotrophoblasts with a large fusion index. At high densities in 5% O2, iPS-derived-TSC form villi-like structures and express extravillous and syncytiotrophoblast proteins HCG-{beta} and HLA-G. Using temporal single cell RNAseq, we define the molecular changes associated with specification under three separate conditions: 1) BMP4, 2) BMP4 and inhibition of WNT, 3) activation of EGF and WNT, inhibition of TGFbeta, HDAC and ROCK signaling (named TSC). With 9,821 high-quality single cell transcriptomes, we find that BMP4 gives rise to mesenchymal cells while TS conditions lacking exogenous BMP4 generate a stable proliferating cell type that is highly similar to six week placenta cytotrophoblasts. TFAP2A programs the specification of primed iPS cells to TSC without transitioning through a naive state. TSC specification independent of exogenous BMP4 will allow for robust and reproducible studies of the cytotrophoblast component of human placenta.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.272955

ABSTRACT

The worldwide SARS-CoV-2 outbreak poses a serious challenge to human societies and economies. SARS-CoV-2 proteins orchestrate complex pathogenic mechanisms that underlie COVID-19 disease. Thus, understanding how viral polypeptides rewire host protein networks enables better-founded therapeutic research. In complement to existing proteomic studies, in this study we define the first proximal interaction network of SARS-CoV-2 proteins, at the whole proteome level in human cells. Applying a proximity-dependent biotinylation (BioID)-based approach greatly expanded the current knowledge by detecting interactions within poorly soluble compartments, transient, and/or of weak affinity in living cells. Our BioID study was complemented by a stringent filtering and uncovered 2,128 unique cellular targets (1,717 not previously associated with SARS-CoV-1 or 2 proteins) connected to the N- and C-ter BioID-tagged 28 SARS-CoV-2 proteins by a total of 5,415 (5,236 new) proximal interactions. In order to facilitate data exploitation, an innovative interactive 3D web interface was developed to allow customized analysis and exploration of the landscape of interactions (accessible at http://www.sars-cov-2-interactome.org/). Interestingly, 342 membrane proteins including interferon and interleukin pathways factors, were associated with specific viral proteins. We uncovered ORF7a and ORF7b protein proximal partners that could be related to anosmia and ageusia symptoms. Moreover, comparing proximal interactomes in basal and infection-mimicking conditions (poly(I:C) treatment) allowed us to detect novel links with major antiviral response pathway components, such as ORF9b with MAVS and ISG20; N with PKR and TARB2; NSP2 with RIG-I and STAT1; NSP16 with PARP9-DTX3L. Altogether, our study provides an unprecedented comprehensive resource for understanding how SARS-CoV-2 proteins orchestrate host proteome remodeling and innate immune response evasion, which can inform development of targeted therapeutic strategies.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.29.271015

ABSTRACT

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, remains viable and therefore potentially infectious on several materials. One strategy to discourage the fomite-mediated spread of COVID-19 is the development of materials whose surface chemistry can spontaneously inactivate SARS-CoV-2. Silicon nitride (Si3N4), a material used in spine fusion surgery, is one such candidate because it has been shown to inactivate several bacterial species and viral strains. This study hypothesized that contact with Si3N4 would inactivate SARS-CoV-2, while mammalian cells would remain unaffected. MaterialsSARS-CoV-2 virions (2x104 PFU/mL diluted in growth media) were exposed to 5, 10, 15, and 20% (w/v) of an aqueous suspension of sintered Si3N4 particles for durations of 1, 5, and 10 minutes, respectively. Before exposure to the virus, cytotoxicity testing of Si3N4 alone was assessed in Vero cells at 24 and 48 hour post-exposure times. Following each exposure to Si3N4, the remaining infectious virus was quantitated by plaque assay. ResultsVero cell viability increased at 5% and 10% (w/v) concentrations of Si3N4 at exposure times up to 10 minutes, and there was only minimal impact on cell health and viability up to 20% (w/v). However, the SARS-CoV-2 titers were markedly reduced when exposed to all concentrations of Si3N4; the reduction in viral titers was between 85% - 99.6%, depending on the dose and duration of exposure. ConclusionsSi3N4 was non-toxic to the Vero cells while showing strong antiviral activity against SARS-CoV-2. The viricidal effect increased with increasing concentrations of Si3N4 and longer duration of exposure. Surface treatment strategies based on Si3N4 may offer novel methods to discourage SARS-CoV-2 persistence and infectivity on surfaces and discourage the spread of COVID-19.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.244269

ABSTRACT

Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically induce weak immune response while particles measuring tens of nanometers are efficiently presented to B cell follicles and subsequently to follicular germinal center B cells in draining lymph nodes, where B cell proliferation and affinity maturation occurs. Here we prepared and analyzed the response to several DNA vaccines based on genetic fusions of RBD to four different scaffolding domains, namely to the foldon peptide, ferritin, lumazine synthase and {beta}-annulus peptide, presenting from 6 to 60 copies of the RBD on each particle. Scaffolding strongly augmented the immune response with production of neutralizing antibodies and T cell response including cytotoxic lymphocytes in mice upon immunization with DNA plasmids. The most potent response was observed for the 24-residue {beta}-annulus peptide scaffold that forms large soluble assemblies, that has the advantage of low immunogenicity in comparison to larger scaffolds. Our results support the advancement of this vaccine platform towards clinical trials.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.271635

ABSTRACT

SARS-CoV-2 causes disease varying in severity from asymptomatic infections to severe respiratory distress and death in humans. The viral factors which determine transmissibility and pathogenicity are not yet clearly characterized. We used the hamster infection model to compare the replication ability and pathogenicity of five SARS-CoV-2 strains isolated from early cases originating in Wuhan, China, in February, and infected individuals returning from Europe and elsewhere in March 2020. The HK-13 and HK-95 isolates showed distinct pathogenicity in hamsters, with higher virus titers and more severe pathological changes in the lungs observed compared to other isolates. HK-95 contains a D614G substitution in the spike protein and demonstrated higher viral gene expression and transmission efficiency in hamsters. Intra-host diversity analysis revealed that further quasi species were generated during hamster infections, indicating that strain-specific adaptive mutants with advantages in replication and transmission will continue to arise and dominate subsequent waves of SARS-CoV-2 dissemination.

15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.28.269175

ABSTRACT

Key steps of viral replication take place at host cell membranes, but the detection of membrane-associated protein-protein interactions using standard affinity-based approaches (e.g. immunoprecipitation coupled with mass spectrometry, IP-MS) is challenging. To learn more about SARS-CoV-2 - host protein interactions that take place at membranes, we utilized a complementary technique, proximity-dependent biotin labeling (BioID). This approach uncovered a virus-host topology network comprising 3566 proximity interactions amongst 1010 host proteins, highlighting extensive virus protein crosstalk with: (i) host protein folding and modification machinery; (ii) membrane-bound vesicles and organelles, and; (iii) lipid trafficking pathways and ER-organelle membrane contact sites. The design and implementation of sensitive mass spectrometric approaches for the analysis of complex biological samples is also important for both clinical and basic research proteomics focused on the study of COVID-19. To this end, we conducted a mass spectrometry-based characterization of the SARS-CoV-2 virion and infected cell lysates, identifying 189 unique high-confidence virus tryptic peptides derived from 17 different virus proteins, to create a high quality resource for use in targeted proteomics approaches. Together, these datasets comprise a valuable resource for MS-based SARS-CoV-2 research, and identify novel virus-host protein interactions that could be targeted in COVID-19 therapeutics.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.270819

ABSTRACT

The adenosine analogue remdesivir has emerged as a frontline antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1. Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.148387

ABSTRACT

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.


Subject(s)
COVID-19
18.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3613273

ABSTRACT

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 A of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment.Funding: This work was supported by a grant from the CAMS-Oxford Institute to D.I.S. E.E.F and J.Ren are supported by the Wellcome Trust (101122/Z/13/Z), Y.Z. by Cancer Research UK (C375/A17721) and D.I.S. and E.E.F. by the UK Medical Research Council (MR/N00065X/1). J.H. is supported by a grant from the EPA Cephalosporin Fund. PPUK is funded by the Rosalind Franklin Institute EPSRC Grant no. EP/S025243/1. The National Institute for Health Research Biomedical Research Centre Funding Scheme supports G.R.S. together with the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (CIFMS), China (grant number: 2018-I2M-2-002), which also supports D.I.S. G.R.S. is also supported as a Wellcome Trust Senior Investigator (grant 095541/A/11/Z). T.M. is supported by Cancer Research UK grants C20724/A14414 and C20724/A26752 to Christian Siebold. This is a contribution from the UK Instruct-ERIC Centre. The Wellcome Centre for Human Genetics is supported by the Wellcome Trust (grant 090532/Z/09/Z). Virus used for the neutralisation assays was a gift from Julian Druce, Doherty Centre, Melbourne, Australia. Conflict of Interest: The authors declare no competing interests.


Subject(s)
Mucopolysaccharidosis I , Hepatitis E , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL